安科瑞多用户计量箱在高校用电计量改造方案 安科瑞鲍静君
摘要通过方案对比选取的用电计量方式,结合终端电子计量装置,实现在不改变既有建筑配电系统前提下将通讯数据在RS485信号与无线信号之间互转,完成普通RS485设备的无线通讯。在末端电子表计量配置ADF300多用户计量箱对单三相混合负载进行计量,对用电能耗数据分项收集,有效降低了建设成本和改造工程量。
关键词 无线通讯ADF300多用户计量箱 无线通讯
引言
在我国,大部分高等院校的建设和运行资金多由政府提供,故院校应率先响应国家的政策和要求。完善校区内教学楼、办公楼、实验楼等公共建筑的能源计量体系,对现有系统进行节能改造,不仅可以减少资源浪费、实现用能的定额管理、分级配置以及进行能效公示评比,还可以通过挖掘能源数据来改进物业管理方式、直接联动控制用能设备节电。
高校能源计量体系的建立,可为国家管理部门了解大学的用能分布结构、宏观调整能源配置和能源政策调整提供数据支持。ADF300多用户计量箱在末端配电中可灵活配置单、三回路计量,有效降低了建设成本和改造工程量。本文以某高校改造项目为例,讲解多用户计量箱在高校用电计量改造中的应用。
1 项目概况
本项目是一幢建设于 80 年代的教学实验楼。通过对建筑的勘查和业主需求的了解,在项目前期对项目的各个方面进行了方案对比,确定整体改造方案,并在实施过程中结合ADF300多用户计量箱,最终实现整栋建筑的精细化分项用电计量。
通过查阅资料和现场勘查,该楼分为 Ⅱ、Ⅲ、Ⅳ、Ⅴ四段,其中Ⅱ段、Ⅲ段六层、Ⅳ段五层、Ⅴ段地上地下各一层,使用功能包括: 办公、实验、教学等。Ⅱ段首层设一处总配电间,两路低压进线供全楼及部分地摇楼用电,Ⅱ、Ⅲ、Ⅳ段每层设有电气竖井服务于本区域,Ⅴ段电源由总配电间或首层Ⅱ段电井引来。各区域的使用功能为: Ⅱ段 1 层为集中实验区( 技术中心) ; 2 ~ 6 层为学院内教授、研究生的办公、实验室。Ⅲ段 1 层为学院行政办公室; 2 ~ 6 层为学院教学实验教室、教授办公室。Ⅳ段 2 层为集中实验区( 技术中心) ; 1、3 ~ 5 层为学院内教授、研究生的办公、实验室; Ⅱ、Ⅲ、Ⅳ段每个房间内均设有配电箱,但由于后期改造房间分拆及合并,导致配电系统混乱,且后期根据使用需要还会发生房间调整; 办公室、实验室内设备多数为插座设备,少数动力设备均由专用回路供电。Ⅳ段五层东侧图书馆分馆,Ⅴ段一层包括计算机机房,文体活动中心,公共阶梯教室,地下一层为人防区域,五个区域均有独立的配电箱供电。
由于楼宇建设年代久远,从属关系复杂,该建筑仅在总配电间设置一块电能表总体计量学院用电能耗。随着学院管理分级、科研经费分摊的内部需求及高校对高校能源监管平台的建设要求,需要在楼内进行既满足学院计费需要,又符合《高等学校节约型校园建设管理与技术导则》要求的用电计量改造工程。
2 项目各项方案对比
了解项目现状和业主需求后,再通过对国家规范、导则等文件的学习,本方案分别从计量方式、改造方式两个方面进行了优化对比。
2.1计量方式
按照《高等学校节约型校园建设管理与技术导则》要求,学校计量深度应达到院、系、部、处的目标要求,导则明确“建立校园建筑及用能设施分类能耗统计或分项能耗统计制度”,即分类和分项都符合导则规定的基本要求。表 1 为两种计量方案的比较。
表1分类计量和分项计量的比较
通过图表列出分类和分项的对比资料可见,两种方式都可以满足本次改造的目的,只是分项比分类得到的能耗数据更多,计量精细化程度更高,对后期改造适应性也更好,但改造工程量大,需求经费多。
2.2改造方式
采用分项计量的效果明显优于分类计量,但高昂的改造经费和巨大的工程量也使业主有所顾虑,寻找降低成本的改造方法成为影响改造效果的关键。经过对无线通讯技术和电子计量设备的了解,末端选用带计量功能且符合精度要求的ADF300多用户计量箱、AEW110无线计量模块等电子设备,通过无线网络将计量数据上传,最后经过软件编程实现各种管理计量的需要。这种创新型用电计量改造方式存在降低改造成本、减少工程量的可能性,表 2 为传统电能表技术与无线电子表技术的对比。
表 2传统电能表与多用户计量箱对比
ADF300多用户计量箱的改造方案不需要对现有配电线路进行更改,减少了大量的施工作业,为了减少面板的安装数量将各个房间面板数量标准化,减少计量插座设备,进一步降低造价。
经过方案对比并结合本项目实际需求确定了最终的设计方案: 在楼内办公室、教学实验教室,实验室采用无线电子表技术的分项计量法,并在户内配电箱设置导轨式电能表,作为末端电子表的二级计量装置; 单独功能区如图书馆分馆、计算机机房,文体活动中心,大型公共教室和大功率用电设备按分类计量法在配电箱和控制箱内设置导轨式电能表计量。
3 项目实施方案
这种创新的改造方案降低了项目的实施难度,由于避免了大量的拆改工作,减少线路重新敷设,使得设计、施工的工作量都得已降低。通过前期对建筑的勘查,在项目的实施过程中将计量点位设置分为配电箱电能表和末端电子表两部分。
安科瑞企业电能管理系统依据住建部《国家机关和大型公建能耗监测系统技术导则》、发改委《电力需求侧管理平台建设技术规范》和企业节能计量相关标准,帮助用户梳理用电去向,建立符合用户实际的用电计量体系,使其用电透明化,加强用电管理,为后续节能改造提供可靠的数据支撑。系统解决方案有Acrel-3000电能管理系统、Acrel-3100商铺电能管理系统、Acrel-5000建筑能耗监测系统、Acrel-PVMS预付费电能管理系统。相关产品有AEM系列电能计量表、DDSD/DTSD1352系列电能计量表、ADF300系列多用户计量装置、AEW110无线通讯转换器等。
变电所中所用的计量部分是供电公司的壁挂表,或者配合系统具有国网性能指标的壁挂表;楼层与总进线场合可以配壁挂表,也可以用AEM系列及ADL300;到了终端用户,根据其不同的个性化需求,可以选择不同仪表,导轨表,预付费,多用户等。
配电箱电能表计量设置: 整栋建筑总配电间两路进线每路设置一块AEM96电能表; 每层电气竖井内设置一块层电能总表; 每个房间的总配电箱内设置一块DTSD1352导轨式电表; 部分大型单相设备 ( 20A 以上) 及三相用电设备分别设置DDSD1352和DTSF1352导轨式电表; 独立功能区如计算机机房,文体活动中心,公共教室,人防区,图书馆分馆,大会议室的配电总箱分别设置AEW110无线通讯模块。
末端电子表计量设置: 办公室、实验室、教学实验教室,按房间数量设置ADF300多用户计量箱。ADF300系列多用户计量箱是一种电子式智能化多用户电能表,设计采用一户一计量方案,具有计量准确度高、户与户之间计量互不干扰、集中安装、集中管理优势。最大可以同时计量12户三相、36户单相、单/三相回路混合用电状况,其接线示意图如下图所示。
计量系统组网形式: 采用《安科瑞高校电能管理系统》,它是安科瑞公司最新研制的与预付费系列电能表配套的售电管理系统,以电能管理软件和集中抄表软件为主,包括计算机、通讯管理机、打印机等设备在内的集成系统,通过校园网传输至学校能源计量监管平台进行数据分析。该系统主要分为三层,其中底层为ADF300系列多用户计量箱,中间层为通讯管理机,上层为客户端PC、服务器及相关外设(如打印机、短信猫等),系统拓扑图如下图所示。
4 结束语
目前我国的大中城市中存在大量高耗能的既有建筑,它们的功能、年代、形式各有不同,节能改造方式也应根据使用需要、现场情况不同做出有针对性的技术方案并择优使用。本文简述的计量改造项目就是先选取最优的计量方案,再运用的技术产品,从而做出有针对性的实施方案,这种方式既满足了业主需要,又降低了改造成本。
参考文献
[1]中华人民共和国住房和城乡建设部,教育部. 高等学校节约型校园建设管理与技术导则 ( 试行 ) ( 建科〔2008 〕89 号 )[Z]. 2008.
[2]中华人民共和国建设部,财政部. 关于加强国家机关办公建筑和大型公共建筑节能管理工作的实施意见( 建科〔2007〕245)[Z]. 2007.
基于PROFIBUS-DP的电能管理及电力监控系统 安科瑞鲍静君
摘 要:设计了基于PROFIBUS—DP的电能管理及电力监控系统,描述了该系统的结构组成和实现原理,给出了主站和串口电力仪表从站通信的实现方法,解决了主从站通信程序设计中的关键问题,验证了系统的通信性能和可行性。
关键词:PROFIBUS;PLC,总线桥,网关,电力监控仪表,工业通信。
0 引言
随着能源的日渐紧张,国家出台了很多有关节能减排的法律法规,各行各业都在采取了相应的节能措施,各制造行业的工厂企业也采用了电能管理及电力监控系统对节能效果进行考核。
相对于MODBUS通信而言,PRFOBUS通信存在着诸多优点,比如高通信速率(最高可达12Mbit/s)、实时性、可靠性、易扩展、易维护性等,很多工厂、企业现存的生产控制自动化网络大都采用现场总线控制系统,PROFIBUS网络是其中应用最多的一种现场总线,因此,很多工厂企业希望能将电能管理及电力监控系统也集成到PROFIBUS-DP自动化网络中,而不是单独进行MODBUS组网。但由于目前存在的大多数智能电力监控仪表都是基于MODBUS通信的,那么如何把现存的不带DP接口的串口仪表设备连接到总线上组成DP网络就成为一个亟待解决的问题。
本文设计了基于串口通信的电力监控及多功能网络电力仪表,给出了基于PROFIBUS-DP通信的智能电力监控及电能管理系统的解决方案。系统中采用了三种方法将基于MODBUS-RTU通信的智能电力监控仪表集成到PROFIBUS-DP网络中。
本文介绍的组网方法,不但硬件成本比较低、安装方便,而且编程简单,主站可以直接对各个电力仪表进行数据采集、远程控制等,传输速率较快,有很好的实用性和可行性。
1 系统构成
本系统采用安装了CP5611通信板卡的工控机作为通信主站,S7-200 PLC CPU222、ANYBUS网关、PB-B-MODBUS总线桥分别作为PROFIBUS-DP网络的三个从站,每个从站又与电力监控仪表组成一个子网,如图1所示。系统中同时也可以连接其他的PROFIBUS-DP从站设备。
图1 系统结构示意图
CPU 222 PLC通过EM277 DP模块接入到PROFIBUS-DP网络,作为PROFIBUS-DP网络的从站,同时CPU222 PLC又作为一个主站与电力监控仪表组成一个子网,电力监控仪表作为子网的从站,主从站之间采用自由口通信方式。
同样,对于PB-B-MODBUS总线桥来说,作为PROFIBUS-DP网络从站的同时,又作为MODBUS子网的主站与电力监控仪表组成MODBUS网络。ANYBUS网关工作原理与PB-B-MODBUS总线桥的工作原理相似,它在该系统中同样既做PROFIBUS-DP网络从站,又作为MODBUS子网的主站与我公司电力监控仪表组成MODBUS网络。
1.1 PLC自由口通信子网
PLC作为PROFIBUS网络的一个从站,其自身功能非常强大,不但可以通过主站对连接到从站PLC I/O点上的各种I/O量进行采集和控制,而且PLC本身就可以构成一个子网,比如MPI网络,自由口通信网络等。而且可以扩展以太网接口模块将整个网络接入以太网,扩展AS-I接口模块,将系统接入ASI-I网络等。对于工业控制场合,该网络应用范围是非常广泛的。
PLC作为自由口通信网络的主站,通过对PLC进行自由口通信编程,实现PLC与电力监控仪表间的MODBUS通信。利用西门子公司提供的库函数MBUS_CTRL和MBUS_MSG可以简单方便地实现MODBUS通信,如图2、图3所示。
图2 自由口通信程序图网络1
图3 自由口通信程序图网络2
该系统中PLC模式为1时进行自由口通信,模式为0时进行PPI协议,波特率为9600,奇偶校验为无校验,仪表读取地址为40038,读取6个数据单元。
1.2网关、总线桥工作原理及配置
对于总线桥来说,一方面,CPU通过对PROFIBUS通信协议芯片的控制实现PROFIBUS的通信,在RAM中建立PROFIBUS通信数据缓冲区。另一方面,通过MODBUS协议实现和电力监控仪表的通信,同样在RAM中建立MODBUS通信数据缓冲区。CPU通过两个通信缓冲区的数据交换,实现PROFIBUS到MODBUS的通信。
由于总线桥自身不具备控制功能,必须通过DP主站进行控制。DP主站通过对其控制字的设置,来控制总线桥作为RS485网络主站对其各从站的发送接收模式,通过监控其状态字来实现数据发送接收状态的监控。PROFIBUS数据区与RS485数据报文格式对照关系如表1所示。
表1 PROFIBUS数据区与RS485接收报文对照表
PROFIBUS映射地址 长度 RS485报文格式
IB0 1字节 该字节用来存储接收报文长度
IB1 1字节 该字节为通信状态字
IB2至以后 若干 接收数据缓冲区
QB0 1字节 该字节用来存储发送报文长度
QB1 1字节 该字节为通信控制字
QB2至以后 若干 发送数据缓冲区
该系统的DP主站是通信板卡,不能直接在S7-STEPV5.4中编写PLC程序对总线桥进行控制,只能通过在上位机ACREL-3000软件中编写脚本程序完成对PB-B-MODBUS总线桥状态字的读取和控制字的读写和通信。
ANYBUS网关和PB-B-MODBUS总线桥实现原理基本相同,均是在转换模块的RAM中建立了PROFIBUS 到MODBUS 映射数据区,由软件实现PROFIBUS 和MODBUS 协议转换及数据交换。但ANYBUS网关自身带有配置软件,数据映射配置实现起来相对简单。
不管是总线桥还是网关,由于受协议转换设备其自身映像数据存储区大小的限制,根据所要采集电参量的多少,可带仪表的个数不同。
2 系统功能
基于PROFIBUS-DP的电能管理与电力监控系统,上位机软件为ACREL-3000电力监控组态软件。通过该软件进行组态,可以在上位机界面上实现队所有电参量的实时显示,如I、U、P、Q、kWh等,图4所示为本系统的电能管理及电力监控系统主界面。
图4 ACREL-3000电力监控/电能计量管理系统实现实时采集监控界面
ACREL-3000还可以实现主要电力参数的实时运行曲线、历史趋势曲线等绘制,如图5所示。另外,ACREL-3000还具有强大的报警功能、报表功能、查询功能、打印功能等。强大的数据库可以将历史记录保留3年以上。
图5 ACREL-3000 实时曲线界面
通过ACREL3000界面还可以实现对PROFIBUS各从站的网络参数采集和显示,比如:总线参数、从站状态、主站模式、看门狗、组态信息以及从站诊断数据等。对于系统的检修和维护也起到非常方便的指导作用。
3 结束语
该系统采用安装了CP5611通信板卡的工控机作为PROFIBUS主站,使用多种方法将电力监控仪表集成到PROFIBUS-DP网络中。调试结果表明:上位机主站能够按时间每隔1s轮流对各个电力监控仪表进行采集数据,运行通信情况良好。
理论上来说,一个PROFIBUS网络的最高传输速率可达12Mb/s,一个网段可带32个从站,一个网络可带126个从站。这里每个DP从站(200系列PLC、ANYBUS网关、PB-B-MODBUS总线桥)根据自身情况带若干个仪表,一个系统网络所带仪表的数量是非常之大的,相对于由通信扩展卡或通信服务器组成的MODBUS系统来说,同样数量的仪表组网,可以节省大量硬件组网设备。
根据系统提供的组网方法,不仅能将工业自动化控制系统与电能管理电力监控系统集成为一体,而且整个网络具有现场总线系统的智能化管理,具有很高的性,还可以节约大量的硬件成本。
文章来源于:《低压电器》2009年14期。
参考文献
[1] 上海安科瑞电气有限公司.ACR系列网络多功能电力仪表[G].2008
[2] 任致程,周中. 电力电测数字仪表原理与应用指南[M]. 北京:中国电力出版社. 2007.
[3] 王永华,Andy Verwer. 现场总线技术及应有教程——从PROFIBUS到AS-i[M].北京:机械工业出版社,2006.