江苏安科瑞电器制造有限公司
18761509873

供应商机

当前所在位置:网站首页 > 供应商机

Acrel3000电能管理系统 免费咨询

电能管理系统在1788中心的应用 安科瑞鲍静君
摘要:介绍电能管理系统在1788中心的应用。
关键词: 商业中心大楼;分项计量;集中监控;电能管理系统
一、项目概述
1788中心由安世7802和安世7829两路35kV市电供电,进户后主楼地下一层的两台35kV/10kV变压器降压。安世7802号线通过35kV/10kV/0.4kV变压后,供给大楼T1、T3、T5、T7、T9变压器下的配电回路,安世7829号进线则供给T2、T4、T6、T8、T10变压器下的配电回路,地下一层安置2台应急柴油发电机。
二、系统设计方案
1788中心设计有1个35kV配电室,1个10kV配电室,4个0.4kV配电室和1个应急柴油发电机房,均位于地下一层,共计配电回路约360个,每个回路安装有智能电力仪表,对配电室部分所有配电回路的工作状态进行监控,每台变压器均配有温度控制仪采集其温度。此外,在各楼层的强电间、空调机房、排风机房、潜水泵房、电梯机房及热交换机房等处配电箱上安置电力仪表,对大楼的照明、空调、风机、电梯等设备和办公室租户用电,共计约700个回路进行监控。根据设计院的设计方案,楼层配电箱部分,除租户、空调和风机使用电度表进行本地分项计量外,照明、动力、电梯等用电设备的用电量均在低压配电室中进行集中计量,其配电箱配电回路仅使用电流表进行运行状态监测[1]。
设计要求配电自动化电能管理系统将配电室和楼层指定回路的运行状态集中显示在值班人员面前,要求完成对配电室35kV、10kV回路和0.4kV回路进线全常规电参量和温度的遥测;对配电室0.4kV馈线回路三相电流、有功电度和分合闸状态的远程检测;对楼层租户配电箱、空调配电箱和风机配电箱回路三相电流和有功电度的遥测,以及对楼层照明、动力、电梯等配电箱回路三相电流的遥测。配电室部分遥测实时性要求高,楼层部分实时性要求相对较低。此外,所有用电量数据需与IBMS系统共享。
本项目中,考虑现场仪表数量较多,在35kV值班室内安放两台系统主机,分别对配电室配电系统和楼层配电系统进行监测。系统拓扑结构为3层,即现场设备层、通讯管理层和站控管理层[2],借鉴ISO-OSI网络模型中物理层、数据链路层、网络层、运输层和应用层的定义。

图1 系统拓扑结构示意图
现场设备层设备包括阿海法综保、丹东华通的多功能仪表和江西华达电子的干式变压器温控仪等。这些设备分别根据设计院要求安装在相应的配电回路上。
参考OSI网络结构模型,现场设备层所有设备在物理层约定为RS-485接口。
因所有配电室和发电机房均在主楼B1F,距离35kV值班室距离不超过100米,故配电室部分所有仪表采用RS-485总线与35kV值班室内的一台通讯管理机连接,总线长度均在200米以内,挂接仪表不超过25台,保障了通讯的实时性和可靠性。
因楼层部分仪表数量多而且配电箱分布松散,考虑项目成本,采用4台RS485集线器,分别安装在主楼16F、4F、B1F的强电间和裙房B1F的强电间内,将一定范围内的仪表通讯总线集中后,再各自以一根RS-485总线连接到35kV值班室内的通讯管理机串口上。此方案通过牺牲部分通讯的实时性(RS-485集线器的驱动能力有限,导致通讯延迟变大),使得项目施工中所需要的线缆数量大幅度减少(实际施工使用的线缆数量约为不使用RS-485集线器的1/5)。
通讯管理层的主要设备是两台通讯管理机、32台协议转换隔离器和1台工业以太网交换机。两台通讯管理机下端串口通过RS-485-232协议转换隔离器与各条仪表通讯RS-485总线相连,上端通过交换机,以太网TCP/IP协议与两台监控主机相连。
站控管理层由两台DELL主机、显示器、打印机、UPS电源等设备组成,通过Acrel-3000电能管理系统软件实现对数据采集、处理和交互的控制,完成网络模型中应用层的功能。
监控主机与现场仪表之间的数据交互以报文形式实现,数据链路层主要协议为Modbus-RTU。因本系统需要向IBMS系统同步所有回路的有功电度值,约定以Modbus-TCP协议向智能楼宇管理系统转发数据。
三、系统功能
(1)35kV、10kV变压器参数显示:如图2所示,电能管理系统采集1788中心配电系统35kV侧和10kV侧的三相相电压、三相线电压、三相电流、总有功功率、总无功功率、总功率因数和有功电度累积值,将其35kV侧和10kV侧的数据列在一起,方便值班人员进行比对和检查。通过干式变压器温度控制采集的变压器三相温度也同时以数值和曲线的形式反映在本界面上。

图2 35kV/10kV配电系统参数显示界面
(2)35kV/10kV配电系统一次示意图:除了显示配电系统的常规参数外,配电室主机的电能管理系统还以配电系统一次图的形式绘制了软件界面,通过标注回路用途,使配电系统的走向更为清晰化,35KV配电系统一次示意图如图3所示。此外,电压、电流等常规电参量也可以在一次示意图界面上查看。

图3 35kV配电系统一次示意图

(3)0.4kV配电系统一次示意图(如图4所示):0.4kV配电室配电回路运行状态使用一次图形式显示,将采集的电参量、变压器温度和断路器分、合闸状态等参数显示在界面上,根据配电室和变压器划分整个0.4kV配电系统并分别进行界面显示,为每一个回路标注其柜体号、回路编号、回路用途和低压系统总编号,进一步明确配电系统的走向。

图4 0.4kV配电系统一次示意图
(4)楼层配电箱数据采集及显示(如图5所示):楼层电能管理主机采集1788中心B3F~30F各处配电箱上仪表的数据,以楼层划分,按照配电箱所处位置和编号对数据进行排序,分类显示租户、空调和风机回路的三相电流和有功电度,显示照明、应急照明、动力、电梯、水泵和一些其他回路的三相电流。

图5 楼层配电箱数据显示界面
(5)报表功能:配电室电能管理系统为用户定制了两种功能的报表,一种如图6所示,针对某一个主要回路,可以由用户自行选择时间生成该回路在该时刻常规电参量的历史值。另一种报表由用户经过简单的操作后,系统便会自动生成配电室所有回路以及楼层部分空调回路、租户电表用电量的日报、月报及年报。

图6 自定义全电参量报表
(6)事故报警和追忆:对于电气值班人员来说,跳闸报警的实时性和准确性是非常重要的指标,电能管理系统为用户定制的报警功能主要针对配电室低压回路断路器的分合闸变位,通过图7所示的报警窗口和外置音箱发出报警音提示值班人员低压馈出回路断路器发生了变位,根据报警窗口显示的内容,可以立即定位报警回路并进行响应,保障大楼配电系统稳定运行。

图7 报警功能界面
(7)通讯状态显示(如图8所示):显示所有仪表的通信状态,根据仪表所处总线、配电室或楼层位置划分,标注其通信地址和通信状态。

图8 楼层电能管理系统设备通信状态图
(8)数据转发:本系统主要负责数据的前端采集处理,并向更上一级的楼宇自动化系统转发数据,其他楼宇自动化系统不再采集计量仪表数据。转发数据主要包括35kV/10kV/0.4kV配电室所有回路电能数据;楼层租户、空调和风机回路的电能数据。

四、问题及解决措施
1、本工程总承包方发包资料中提到电能管理系统采集点位约900点,而实际采集点位逾1000点,数量多且分布广。强电施工单位施工时使用的临时配电箱和错误的配电箱编号,对本系统的通讯施工造成了不小麻烦。项目施工时核对配电箱资料的完整性和准确性,并及时指出强电施工单位工作中的错误要求其整改。
2、4台RS485集线器安装在楼层强电间内,其220VAC电源取自就近的配电箱中,初步方案并未对220VAC电源做规范,即直接从最近的配电箱中取。项目后期调试时发现因1788中心尚未完工,楼层部分经常因为施工而断电,有时会断开集线器的电源,导致系统数据链路断开,故对现场通讯设备辅助电源进行整改,从现场拥有EPS电源供电的应急照明箱中备用的空开下端取220VAC电源,并贴上标签告知维护人员不可随意关断,保障数据链路稳定。
3、系统向IBMS系统进行数据转发所用的以太网线先后因35kV值班室闹鼠患而被损坏3次,后联络1788中心的业主,由灭鼠公司出面解决此问题。
4、1788中心配电室、配电箱上的仪表多由丹东华通提供,在本系统投入运行后,发现了不少仪表配置的问题,如主楼9楼应急照明箱9PME1、2楼应急照明箱2PME1等处,仪表电流互感器变比为100/5和300/5,而电能管理后台显示其三相电流约为0.006A、0.016A、0.008A。与业主管理人员到现场查看后发现其小数点位设置为3位,即最高显示值仅为9.999A,设置明显有误。项目进行现场验收时也发现多处仪表具有类似问题。由甲方通知丹东华通进行整改。
五、结束语
1788中心电能管理系统于2012年4月正式投入运行,通过配电室主机与楼层主机的协同工作,使值班人员在一般情况下不用再前往配电现场查看,实现了配电室无人值守、配电系统自动化。

文章来源于:《自动化应用》2012年7期。

参考文献
[1].任致程 周中. 电力电测数字仪表原理与应用指南[M]. . 中国电力出版社. 2007. 4
[2].周中等编著. 智能电网用户端电力监控与电能管理系统产品选型及解决方案[M]. . 机械工业出版社. 2011.10
Acrel3000电能管理系统
能源管理系统在城市轨道交通中的应用 安科瑞鲍静君
1 地铁能耗分析
地铁是大运量的城市轨道交通运输系统,也是耗电量的大户。地铁运营过程中消耗能源的主要形式是电能。根据对地铁用电负荷的统计分析,能耗主要分布在列车牵引用电和各种动力照明设备用电,如通风空调、自动扶梯、照明、弱电设备等方面。图1是地铁各系统耗能分布图。

图1 地铁各系统耗能分布图
从图1中可见,地铁列车牵引用电和各种动力照明用电量比例约各占50%。牵引供电、通风空调、电扶梯、照明等能耗占地铁总能耗的90%左右,是节能工作的重点。因此,应对地铁中主要用电设备以及持续性运转的大负荷容量设备加强能源管理和监控,并对采用变频等节能技术措施的设备做好经济技术考核和对比分析工作。
2 地铁能源管理系统的可行性分析
目前,综合监控系统已在全世界范围内的城市轨道交通工程中成功应用,并且带来了良好的经济效益和社会效益。综合监控系统是一个大型的综合自动化系统,它采用通用的软件平台、一致的硬件架构、统一的人机界面,通过对相关系统的集成和互联,建立了一个高度共享的信息平台,实现地铁各系统间的信息互通与资源共享,从而提高了日常管理与调度工作的效率和地铁运营的整体服务水平。
另外,国内新建地铁的低压配电柜和环控电控柜已采用智能开关柜设计方案。低压配电柜、环控电控柜内智能网络的构成是柜内智能仪表通过冗余的现场总线,同时通过智能通信管理器将数据信息上传至综合监控系统。采用这种方式不仅能确保采集的设备电能数据能够及时发送到监控系统,而且可靠性高、系统构成简单、经济,便于集中管理。
地铁综合监控系统的工业以太网络等硬件和底层现场总线等基础构架,为能源管理系统的实施创造了非常有利的条件。在此基础上,采用先进可靠的能源管理软件、硬件,完全可以建立一套完整的、具有先进水平的地铁能源管理系统。
3 地铁能源管理系统在轨道交通11号线安亭站地块的应用
3.1 项目概述
安亭站位于上海嘉定区安亭镇曹安公路墨玉路,为上海轨道交通11号线的高架岛式车站,于2010年3月29日启用。上海安科瑞电气股份有限公司于2011年8月承接轨道交通11号线能源管理系统的设计及施工。实现了对配电室内的高压,低压进线、电容补偿、联络、出线回路进行远程监控。Acrel-5000型能源管理系统预留了扩展接口,可方便进行扩展。
整个系统采用网络分布式结构,监控主机位于监控中心值班室(位于中心变配电室内)内,系统采用开放的通讯协议,通过RS-485现场总线与高低压配电系统等相连,实现数据通讯功能。
3.2 组网结构
该系统主要采用分层分布式计算机网络结构,如图2所示共分为三层:站控管理层、网络通讯层和现场设备层。

图2 组网结构图
现场设备层主要是连接于网络中用于电参量采集测量的各类型的仪表和保护装置等,也是构建该配电系统必要的基本组成元素。该项目中包括M5系列综保、ACR系列网络仪表及WHD系列温湿度控制器,共实现对407个现场设备进行监测和管理。
网络通讯层是由通讯服务器、接口转换器及总线网络等组成。该层是数据信息交换的桥梁。
站控管理层是针对配电网络的管理人员,该层直接面向用户。该层也是系统的最上层部分,主要由能源管理系统软件和必要的硬件设备如计算机、打印机、UPS等组成。
3.3 设备参数列表

3.4 系统设计参数

3.5 系统功能及软件界面
3.5.1 分类、分项能耗数据统计
系统具备历史数据、报警信息等的存储功能,存储历史数据保存时间大于三年。系统同时具备将分类、分项能耗数据按“需要发送至上级数据中心的能源数据”的要求发送至上级数据中心的功能。界面如图3。
3.5.2 能耗数据的实时监测
系统具备良好的开放性,可对用户需求进行功能扩展,在基本分析功能的基础上为用户定制个性化报表和分析模板;系统具有报警管理功能,负责报警及事件的传送、报警确认及报警记录功能以便告知用户或供用户查询;系统具备权限管理、系统日志及系统参数设置等功能。界面如图4。
3.5.3 用能情况的同、环比分析
对各分类、分项能耗(标准煤量或千瓦时)和单位面积能耗(标准煤量或千瓦时)进行按月、年同比或环比分析。可预置、显示、查询和打印常用建筑能耗统计报表。界面如图5。
3.5.4 建筑能耗数据分析
系统对分类、分项能耗数据进行采集汇总后,可生成各种数据图表、饼图、柱状图等,实时反映和对比各项采集数据和统计数据的数值、趋势和分布情况。系统可按总能耗和单位面积能耗进行逐日、逐月、逐年汇总,并以坐标曲线等各形式显示、查询和打印。界面如图6。
3.5.5 远程网络访问功能
系统以Web发布后可进行远程网络访问。基于.Net平台,使用ASP.Net、JQuery技术开发,可通过Internet访问,具有跨平台的特性,用户可通过各种移动终端(笔记本、平板电脑、手机等)访问。界面如图7。




图7 远程网络访问功能
4 结语
“只有可被测量的才是可被管理的。”地铁能源管理系统的总目标是建立一个全线性或者整个城市轨道交通网络的能源管理系统,构建一个覆盖列车牵引用电、各车站动力照明设备用电,以及车辆段电能、燃气、自来水等能源介质的自动监控系统。地铁在满足公共交通功能需求的同时,应按照合理用能的原则,推进先进节能技术的应用,加强节能管理和能耗控制,以提高能源利用效率,降低运营成本。

参考文献
[1]GB50157—2003 地铁设计规范[S].
[2]JGJ16—2008 民用建筑电气设计规范[S].
[3]上海安科瑞电气股份有限公司产品手册.2013.01.版
苏州创业园二期电力监控与电能管理系统设计方案 安科瑞鲍静君
「摘要】:本文介绍基于网络电力仪表的Acrel-3000电力监控系统在苏州创业园二期的应用,实现了分散式采集和集中控制管理的智能化电能计量管理和监控。省去了值班人员现场抄表的烦琐,具有投资少、简明实用、便于智能管理等优点。
关键词:大型公建;网络电力仪表;电力监控软件
0引言
当前,根据住房与建设部〔2008〕114号文件,政府机关和大型公建应当实行能源消费计量制度,区分用能种类,用能系统实行能源消费分户、分类、分项计量,及时发现、纠正用能浪费现象。同时地方政府也积极响应号召,也出台了相关规定,如苏建科〔2007〕217号规定自2007年9月1日起,新建、改建和扩建单体2万m2以上的公共建筑项目,在设计、施工图审查时均应执行国家、省有关标准。在电气部分明确规定:变电所各出线回路均应配置电能计量装置,计量装置应采用数字式电能表计,并根据建筑的类别和档次,尽量配置通讯接口,以便于构成网络,并设管理后台。
苏州创业园二期位于苏州高新区竹园路与珠江路交叉口附近,总建筑面积13.58万平方米,由3幢26层独立塔楼组成。每个楼层都有一个配电室,室内的配电柜中安装了安科瑞600多块网络多功能仪表。为了能够实现电力参数实时遥测、电能计量分项管理、电能报表等功能,系统采用Acrel-3000电力监控、电能管理软件把现场的仪表联在一起,做到集中管理、集中控制。
1. 系统结构
Acrel-3000电力监控组态软件是对现场生产数据进行采集与过程控制的专用软件,最大的特点是能以灵活多样的“组态方式”而不是编程方式来进行系统集成,它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成监控层的各项功能,比如在分布式网络应用中,所有应用(例如趋势曲线、报警等)对远程数据的引用方法与引用本地数据完全相同,通过“组态”的方式可以大大缩短了自动化工程师的系统集成的时间,提高了集成效率。
苏州创业园二期电力监控系统的拓扑结构如图1。

图1 系统拓扑结构图
系统采用分布式结构,按功能或区域进行划分,模块化设计。整个系统分为三层,即现场层、中间层、主控层。
1.1现场层
现场层主要任务是将现场的各种配电系统的运行参数进行采集和测量,并将采集和测量的各种数据传输给监控系统。其主要设备是:ACR320EL、ACR210EL网络电力仪表,装设在每层的动力柜内。上述设备均相互独立完成各自的功能,不依赖主控计算机运行,具备RS-485 通信接口,通过现场的RS-485总线将检测到的各项电参数和状态信号实时传输到中间层的数据处理单元—通讯服务器。
ACR网络测控电力仪表,是针对电力系统、工矿企业、公共设施、智能大厦的电力监控需求而设计的智能化电力仪表。它能测量所有的常用电力参数,如三相电流、电压,有功、无功功率,电度以及开关量输入/输出状态等。该系列仪表具备完善的通信联网功能,能实现远程遥测、遥控功能,非常适合于实时电力监控系统。
1.2中间层
中间层位于现场层与主控层之间,采用高性能、嵌入式通讯服务器。通讯服务器负责把现场层仪表采集的数据经过网络通信联接、数据交换上传到主控层,是主控层与现场层的桥梁。
1.3主控层
主控层位于监控室或值班室,配置高性能、高可靠性工业级计算机、UPS不间断电源、打印机、报警装置等。Acrel-3000电力监控软件安装在主控计算机上,通过软件的人机界面和各种管理功能实现对整个箱系统的实时监控和报表管理。
创业园二期的监控室位于B幢三楼,通过六个通讯服务器把分布于每个楼层动力柜内的共计600多块ACR仪表有机的联系在一起,再通过楼层的局域网把数据传输到后台系统。
2. 系统框图及主要实现的功能
系统采用C/S架构,数据处理以数据库为中心,分采集、显示、算法等模块,各主要逻辑关系如下系统框图。

图2 系统框图
系统依据客户实际需求进行设计,并实现了一次主接线图界面显示;电参量遥测及电参量越限报警;事件记录;系统运行异常监测;故障报警及操作记录;报表查询与打印;系统负荷实时、历史曲线,用户权限管理等主要功能。
如A幢4-7层空调总回路8月份各天的用电趋势图如图3所示。

图3 电能棒图
3. 设备与投资
根据现场实际情况所配置的系统硬件含采集装置、电源、工作站主机、打印设备、系统软件、弱电安装施工等总计费用为35万元左右,平均每幢楼的投入费用不超过15万元。配电各环节的数据均可通过监控主机集中显示,方便配电管理人员及时发现配电故障环节,按月统计用电数据,又可以通过OPC转发上传至楼宇自控系统BAS或安防系统FAS,便于整体调度。相对于传统的电工抄表、统计虽增加了一次投入,但智能化程度得到极大提高,节省了人力资本的投入。
4. 结束语
ACREL-3000电力监控系统具有通用性好、可靠性高、组态灵活等优点。目前系统已投入运行半年以上,极大的方便了用户的使用。随着计算机信息技术的普及,低压配电智能化的要求也越来越高,变配电监控及低压配电管理使得实现配电室的无人职守真正成为现实,系统对各种用电设备的历史运行数据和状态进行管理分析,便于维护人员明确设备状况,制定详细的设备维护计划,减少人力投入,提高工作效率,从而降低整个系统的运营成本。
参考文献:
1)《电力电测数字仪表原理与应用指南》 任致程,周中,中国电力出版社
水泥企业能源管理系统研究与应用 安科瑞鲍静君
0项目概况
山东某水泥厂建有2 条日产5000 吨熟料生产线和一座年产100 万吨水泥粉磨站。为发展循环经济,该厂为2 条熟料线分别配套建设了6MW、9MW 纯低温余热发电站。水泥企业是典型的高耗能行业,该厂煤、电、水费用合计占总生产成本的70%以上。因此,建立有效的能源综合管理系统、节能降耗是公司健康发展的迫切要求。安科瑞电气股份有限公司于2010年4月承接了该项目,整个系统采用Acrel-5000能耗监测系统,主要实现对企业用电量和用水量的在线监测和能耗管理。
1 目标任务
监视、分析以及控制能源使用,精确记录水泥熟料生产线各个环节和设备的能耗状况,记录分析和评价整体能耗费用水平,从而降低每个环节和线路能源的整体使用成本,同时将能源数据升华为有价值的信息,用于掌握和分析各个部分的能源使用情况。将能源成本分摊到每个车间、班组、设备、生产环节或线路,并与绩效考核挂钩。自动生成A、B、C、D 各班能源消耗统计及主要设备停机次数、运转时间,并对用能情况通过曲线、棒图等形式表示出来,便于通过能源数据的收集和设备状态的分析,进一步发现能源使用漏点和节能空间比较大的环节,评估各项节能措施和设备的实际效果。
2 总体设计
能源管理系统借助现代化网络技术和计算机技术实时监视各种运行能源参数,不断地传送至系统服务器中,使运行管理人员可以通过监控中心全面了解系统的运行工况,简便地实现各种数据分析。通过该系统,能够精确记录各个车间和主要设备的能耗状况,记录分析和评价整体能源费用水平和能耗费用的分解,发现能耗的过度消耗点,实时监测能耗信息,调动生产者的积极性,帮助提高节能减排的效率。
2.1 系统组成
该系统主要由现场监控设备(主要包括各种智能仪表)、通讯设备(工业计算机数据环网)、能源管理系统软件3 部分组成。一次传感仪表主要采用施耐德公司产品,数据采集器、数据处理服务器、网络服务器、网络通信设施、主机及终端显示屏等全部采用国内先进产品。
2.2 系统结构
该系统数据采集全部来自于现场智能仪表,与工业控制网络完全隔离,确保了工业控制网安全可靠稳定运行。系统与地面管理数据网络互联,实现了WEB 信息传输与发布。系统基于TCP/IP 架构,具备与其他子系统互联互通接口。系统内部能源监控和管理系统采用分层分布式结构,方便用户的管理和维护工作。系统采用专用的能源监控和管理软件。
2.3 系统原理
通过该系统实时获取能源消耗监控点能耗数据,对能源供应、分配和消耗进行监测,实时掌握能源消耗状况,了解能耗结构,计算和分析各种设备能耗标准,监控各个运营环节的能耗异常情况,评估各项节能设备和措施的相关影响,并通过WEB 把各种能耗日报报表、各种能耗数据曲线等发布给相关管理和运营人员,分享能源信息化带来的成果,完成对企业能源系统的监控及电力负荷耗能状态的监测和管理。为节能工程提供数据支撑。
2.4 系统功能
1)实时监测能源数据。准确的能耗数据是节能工作的基础。能源管理系统可以根据实际需要,对水泥熟料生产各工艺,包括石灰石破碎、原料粉磨、煤粉制备、熟料烧成、余热发电等能耗信息进行实时监控。所监控的数据包括电能数据、蒸汽数据、煤耗数据、压缩空气数据、用水流量及原料消耗量等。
2)形成重要能耗报表。定期提供单位熟料电耗、煤耗、水耗、气耗等综合能耗信息,并对各生产工艺环节进行单耗、总耗统计;报表分为日报、月报、季报、年报等几种,分析电、煤、水、压缩空气、蒸汽消耗情况,以及主机设备运行时间、停机次数等信息。系统还可以分析对比不同时期,同类、不同类设备之间的耗能状况,为发现节能漏点,提供数据参考。
3)分析能耗负荷特性。以图表、棒图、曲线等方式,进行一系列负荷对比分析,包括单位能耗对比,重要负荷对比,一、二线同类负荷用能对比等;系统将分析结果长期存储在数据库中,同时考虑能源消耗、生产计划、产出多方面信息,总结经验,使设备以经济合理的方式运行,实现系统的节能降耗。
4)细化成本管理。科学准确的界定和分析各部门、班组用能成本,可实现对各车间及熟料线A、B、C、D“四班三运行”模式下各班能源消耗数据统计分析,并能做到班、日分析,使能耗分析更加准确、及时、细化,提升了对能耗成本的控制能力。
通过对比各部门和班组能耗数据,可以发现不良的操作习惯,形成科学的管理和考核办法。
5)预警并诊断能耗异常情况。对不符合工艺操作流程的用能设备、各测量点能源消耗的异常情况进行自动诊断和报警提示。对超出功率范围的能耗设备进行报警、对重要设备运行匹配状况提出诊断信息。控制室管理人员可根据系统提示,及时作出科学处理,有效防止跑冒滴漏现象,为生产线安全稳定运行提供可靠保障。
2.5 软件特点
上位机软件为Acrel-5000能耗监测系统组态软件,该软件是对现场能耗数据进行采集与监测的专用软件,最大的特点是能以灵活多样的“组态形式”而不是编程方式来进行系统集成,它提供了良好的用户开发界面和简捷的工程实现方法,只要将其预设置的各种软件模块进行简单的“组态”,便可以非常容易地实现和完成对现场数据的采集与监测功能。Acrel-5000能耗监测系统具有友好的人机交互界面,可实时和定时采集现场设备各参量及开关量状态,并将采集到的数据上传给数据中心存储。系统还提供了实时曲线和历史趋势曲线分析,符合用户设计需要的报表、事件记录和故障报警等功能。整个系统可以实现所有回路能耗的采集和统计,实现了远程自动抄表、能耗监测功能。
1)运行状态监测:通讯异常报警提示。
2)用户管理:不同用户权限具备不同操作功能,各级权限的口令修改操作功能,具有权限防误功能。
3)能耗报表、棒图:实现了所有能耗报表的按时间查询,分为日、月、年报表等,任意分类、分项实时能耗棒图显示。
4)打印及导出:所有报表及界面可打印,或以EXCEL、WORD 格式进行导出。
3 网络实现方案
系统监控中心设在控制室,作为能源管理系统的数据和管理中心,承担整个能源管理系统数据的采集、存储、统计、分析功能,同时管理整个系统的用户权限和Web 发布功能。整个系统采用光纤、以太网总线、RS485 等传输介质,组建独立的、专用的通讯网络。主干线采用工业级光纤环型以太网络,环型主干网共设立11 个网络节点,包括监控中心、总降压站、余热电厂电气室、一线窑头电气室、一线原料粉磨电气室、一线原料处理电气室、二线窑头电气室、二线原料粉磨电气室、二线原料处理电气室、石灰石破碎电气室、煤粉制备电气室,其它电气室、工作间等,信号采用光纤、RS485 或信号电缆就近连接到
这10 个节点之一,实现与监控中心的数据传输。
能源管理系统采用分层分布式网络结构(图1),系统自下而上分3 层:现场监测层、通讯层和系统管理层。

图1 某水泥厂能源管理系统网络结构
3.1 现场监测层
现场监测层是指直接采集现场设备数据并具备上传功能的现场监测设备,包括流量计、电力参数测量仪、压力传感器、电子秤以及可编程控制器PLC 等。这些监控设备完成信号采集、处理,并转换为通讯信号,接入到网络通讯层。东华水泥公司能源管理系统现场监测层将监测8 个子系统的现场数据:电能子系统、用水子系统、供煤子系统、柴油子系统、压缩空气子系统、蒸汽子系统、原料子系统、烟气子系统。
3.2 网络通讯层
网络通讯层是指完成能源管理系统通讯所涉及的底层通讯链路(如RS485)、通讯转换设备(以太网关)以及顶层通讯链路(如光纤以太网、TCP/IP 网络)等的总称。这一部分是连接现场监测层和系统管理层的纽带环节。本项目现场通信网络采用RS485 总线方式,支持Modbus 通讯规约。通过以太网关转换为以太网络。以太网关扩展的RS485 的串行接口,支持Modbus 现场总线协议,每个 RS-422/485 通道最多能连接32 个智能设备。通过以太网关把低速串行信号转换为高速以太网,将现场层的电力数据转送入局域网内,方便上位系统的管理。工业级光交换机将以太网的电信号转换成光信号,多个以太网交换机组成光纤环网。依靠光纤网络良好的抗干扰性和传输性能可以更好适应恶劣的电气环境和远程的数据传输。监控中心与各站点(光纤通讯节点)之间采用全双工交换式光纤环网结构。光纤自愈环技术具有稳定性好、可靠性高和自愈能力强的特点。光纤环网中任何一处的线路故障不会导致通讯故障。
3.3 系统管理层
系统管理层是能源管理系统的最高管理层。系统管理层的全部设备安放在控制室内。配置一台监控服务器、一台操作工作站、一台WEB 服务器、通讯设备、激光打印机、UPS 等。数据服务器采用高性能计算机,能源管理软件采用专业的监控组态软件。该层完成接受现场监测层和DCS 系统上传的实时数据,并对这些数据进行分析、转换、存储,并以数字、曲线、报表等形式显示在屏幕上。能源管理系统须采用分层分布式网络结构,应具有良好的可靠性与实时性。监控软件应基于Windows 2000/2003/XP 中文操作系统,采用客户机/服务器模式的分布式网络结构,标准化、网络化、功能分布的体系结构;具备软、硬件的扩充能力;支持系统结构的扩展和功能的升级。同时,该层可以提供标准的网络接口和通信协议,实现与其他系统的联接;系统管理层通过OPC Server 与其它集成系统进行数据交换。具备与山东淄矿集团内部计算机网络、信息管理系统(MIS)、生产管理系统(如:DCS)、建筑物集成管理系统(BMS)等系统的联网,与其它接口可采用OPC Server/Client 模式。
4 主要监控及计量表计




5 应用效果
Acrel-5000能源管理系统自 2010 年4 月份试运行以来,通过边完善、边应用、边改进,在能耗管理控制方面取得了初步效果。
1)强化了对标管理。大力开展了班与班之间、一条熟料线与二条熟料线之间对标活动,且能实现当日对标。通过查找能源使用漏洞,减少重要耗能设备故障,提高了设备运转率,降低系统停机率,降低了能耗。
2)降低了用电消耗。通过能源系统报警提示,当供电系统总负荷超出申请需量时,系统可自动提示DCS 操作员调整负荷,关停有关设备。当原料磨主电机、煤磨主电机等大型用电设备停机后,系统将会自动提示操作人员,将其关联的原料磨风机、煤磨排风机进行及时关停,节约了电力消耗。试运行期间,先后避免了3 次风机停机不及时现象,降低电力消耗超过5000kWh。2 次调整了设备峰谷平用电不合理情况。
3)加强了用水管理。一旦发现总管路水流量大于其各支路流量之和,或支管路流量突然增大,超出正常范围时,系统将自动报警,监控人员即可断定管路有漏水点,组织人员查找处理,堵塞漏洞。试运行期间,避免了2 次漏水事故。通过开展对标活动和加强考核,取得了显著效果。
Acrel3000电能管理系统
能耗监测系统在锦江之星假日酒店中的应用 安科瑞鲍静君
1 概述
随着社会经济的快速发展,能源问题已经成为制约经济和社会发展的重要因素。能源供应的紧张和能源价格的上涨,使得酒店运营过程中,能源方面的成本已经成为日常支出中占有很大比重的一部分,对能源使用方面的节约和控制成为酒店管理中节约开支、增加利润的重要环节。同时国家对节能减排的要求越来越高,绿色、节能、环保成为酒店业发展的新趋势。能耗监测系统的引入能为酒店提供能源使用情况的精确分析,为酒店寻找节能空间,寻求合理的节能方案,提供有力的支持。能源系统即:供电系统、供水系统、供气系统、供冷系统、供热系统等,能源管理的核心就是对酒店中用电量、耗水量等的运行及状态进行安全、合理地实时监测及科学化的管理。海康酒店能耗监测系统是基于安科瑞电气股份有限公司自主设计的Acrel-5000能耗监测系统,针对能量监测的能源管理整体解决方案。
2 设计标准
Ø 《建筑智能化系统工程设计管理暂行规定》建设部1997
Ø 《民用建筑电气设计规范》(JGJ/T16-92)建设部
Ø 《智能建筑设计标准》(DBJ08-4-95)上海市建委1996
Ø 《建筑和建筑群综合布线工程设计规范》中国工程建设标准协会1997
Ø 《中华人民共和国国家计量检验规程—热能表》(JJG225-2001)国家质量监督局2002
Ø 《大楼通信综合布线系统》(UD/T926)邮电部1997
Ø 《民用建筑电气设计规范》
Ø 所有计算机硬件系统均符合下述标准:
·电磁学规范:FCC Class B或CISPR22 ClassB
·安全规范:UL Listed(美国)或EN60950()
3 系统设计
3.1 系统总体设计说明
本项目是经济型酒店办公管理的综合性项目。一套综合有效的能耗监测系统将在酒店管理中将起到不可或缺的作用,不仅能有准确有效地对酒店能耗情况进行实时在线统计,降低人工抄表造成的不准确性和滞后性,而且能够自动产生各种能耗报表,对能耗数据进行横、纵向的比较,帮助酒店管理进行能耗分析,达到节约能源、降低成本的目的。本设计从锦江之星假日酒店建筑结构和项目实际功能出发,对总共12个楼层,各个楼层的电量使用情况进行实时采集和在线监测。整套能耗监测系统,在电量采集的同时,可以辅助酒店管理实现自动管理,降低管理和人力成本,进行能源统计,根据系统自动生成的各种能耗情况报表,实现节能,避免能源浪费。通过实时计量数据的综合、分析,寻找酒店运营的节能空间,降低能源成本,并通过自动化实时检测本系统状态,保证本系统稳定、精确的使用。
3.2 设计原则
①先进性
本系统设计遵循系统工程的设计准则,通过科学合理地设计,系统整体满足酒店能耗监测的需要,大力采用物联网技术、3G移动通信技术等一系列成熟、可继承、具备广阔发展前景的先进技术,使系统能在未来数年内不落后,通过软件升级即可实现更多新功能,保护用户的投资。
②实用性
依照用户要求,坚持实用性为主的原则,避免使用不成熟、过分超前的技术和产品,在满足用户提出的详细技术要求的基础上,尽力充分考虑周全,给出科学合理的优化建议。
③可靠性
系统可靠性是系统长期稳定运行的基石,从系统设计理念到系统架构的设计,再到产品选型,都坚持系统可靠性原则;所采用的无线传感网方案,无线通信性能经过长期测试,工作稳定,保证数据准确。
④安全性
管理系统软件按不同的优先级别设有密码,可以防止无关人员乱操作、修改费用、破坏系统或资料;数据加密传输,可采用32/64/128位密钥加密技术,保证数据安全,和用户信息不外泄。
⑤开放性
本系统设计将采用标准化设计,严格遵循相关技术的、国内和行业标准,确保系统之间的透明性和互通互联,并充分考虑与其它系统的连接;在设计和设备选型时,系统以电量采集为中心,预留水、热、气等其他能源自动计量的管理接口,科学预测未来扩容需求,进行余量设计。
⑥易管理性、易维护性
本能耗监测系统只在原有能耗计量设备上加装采集设备,对水、电、热等线管结构不做任何改动,安装方便;采用无线自组网方式传输数据,无需进行铺线等改造工作,真正即插即用;采用全中文、图形化软件实现整个监控系统管理与维护,自动检测系统中每一台设备的运行状态,并示出详细参数,以辅佐管理人员及时准确地判断和解决问题;采用稳定、易用的硬件和软件,完全不需借助任何专用维护工具,既降低了对管理人员进行专业知识的培训费用,又节省了日常频繁维护所产生的费用。
3.3 系统设计方案
Acrel-5000能耗监测系统主要针对酒店的主要用能设备进行智能管理以及针对酒店总能源、能耗、能费、能效、能管进行统计分析与规划管理,为酒店从思想、形为、管理、技术、创新等方面提供科学的自动化管理平台,从而直正实现酒店的整体节能降耗的目标;对酒店耗能进行横向和纵向对比,发现能耗发生的效率,可以为酒店定价等提供一定的理论依据,分析酒店运营过程中能源利用效率和节能潜力;提供从运行数据到管理数据的平台,酒店管理者也实时了解酒店运营的能耗情况,而不用等待汇报数据;可以自定义各种生产上的能耗报表,可以提供酒店的能耗汇总情况,符合实国家发改委、统计局和环保总局制订的《单位GDP能耗统计指标体系》。
3.4 系统结构
Acrel-5000能耗监测系统通讯采用无线通信方式,设计采用4层结构:
信息存储与处理层:能耗监测数据的存储与处理平台,主要由酒店服务器、电脑,能耗监测管理平台组成。
Ø 广域通信网:主要由各运营商的有线、无线网络,及企业内部局域网组成。
Ø 无线传感网络:主要由cetcStack无线传感网协议开发的WSN网络设备组成,包括WSN采集器、路由器和协调器。
Ø 信息采集层:主要有各种能耗计量设备组成,包括电子式电表、水表、热量表等。
本系统所采用的无线传感器网络具有自组网、自维护、自适应、可扩展性等功能,网络运行无需人工干预,并可定制在433~464MHz、470~510MHz等不同通信频段。网络由协调器、路由器和终端设备组成,支持星型、树型和网格型网络,网络最大级数为15级,最多可容纳65536个节点,节点的逻辑地址采用6字节的ID。网络是对等网络,安装简单,真正即插即用。网络与上位机之间的通信协议接口丰富,用户可随时查看网络的各种信息,可随时对网络作各种形式的管理和控制,方便快捷,稳定可靠。

3.5 系统功能特点
(1)远程查询
用户可以随时随地通过Internet网登录系统,查看酒店能耗数据,系统实时地对能耗数据进行分析,设置及动态改变网络ID、工作频率等关键网络参数;
(2)拓扑管理
系统能够实时管理无线传感网设备以及可变的无线传感网络拓扑结构,以便更好地帮助设备安装人员进行设备安装和调试;
(3)数据查询
应具备对建筑、楼层、用户编号、用户姓名、数据时间、计费类型的任意时间的历史数据的查询功能;
(4)报表打印
具有默认标准报表打印格式,并附带报表格式设计软件,用户可根据需要,自定义修改报表打印格式;
(5)权限设定
应具有多级操作员密码设定权限。防止无关人员随意改动及查看;
(6)数据交换
用户需查询的数据可以以标准、通用的格式直接导出,可满足智能系统集成要求;
Ø (7)实时数据显示
在图形界面上应可实时显示能耗数据和数据来源等属性,以图形状态显示酒店水、点等耗能曲线和各楼层的用量曲线,便于协助酒店管理者制定使用用量的计划;
(8)报警管理
可实时检测系统的工作状态,包括:WSN采集器、WSN路由器等。对于设备的故障信号和类型,可通过弹出窗口和声音等方式报警;
(9)集中抄表
能够通过Web界面采集层能耗设备进行远程抄表;
(10)系统监控
对用户的使用情况进行实时全面的状态监控信息及完善的日志查询,对人为的恶性破坏及时进行报警。
3.6 运行界面
Acrel-5000能耗监测系统监控中心管理软件共分为如下几个模块:
① 抄表信息: 包含所有的日常的硬件通讯相关的操作,包括远程抄表,状态检查,远程控制等功能。
② 拓扑图:网络拓扑图表示WSN协调器、路由器和采集器的网络链路关系。
③资料管理:包含对系统运行数据进行备份、基本维护等功能。
④ 统计报表:包含对系统运行的历史数据进行查询、分析、统计等功能。
⑤系统管理:设置系统运行的基本参数,包括硬件参数,仪表资料,用户资料,计划任务、操作员资料等。

海康酒店能耗监测系统登录界面

海康酒店能耗监测系统主界面

电量统计及图形显示界面
4 主要监控及计量表计




5 结束语
随着智能建筑的发展及电力的广泛应用,对智能建筑的配电系统的智能化集成管理已成为国家机关办公建筑及大型公共建筑智能化建设的必然趋势,本文介绍的基于Acrel-5000的能耗监测系统,不仅可以实时显示电力运行状态及用电状况,还能对数据进行分析处理,以用户适用的方式展现出来,满足用户的需求,实现对采集数据的分析、处理,其生成各种电能报表、分析曲线、图形等,极大的方便了用户的使用,便于配电系统的实时监控与电能的远程抄表与分析研究,为智能建筑的节能技术提供参考。

参考文献:
[1]安科瑞电气股份有限公司系统解决方案.2013.1版.
Acrel3000电能管理系统
高校建筑能耗监测系统的应用 安科瑞鲍静君
1、概述
我国大型公共建筑年耗电量约占全国城镇总耗电量的22%,每平方米年耗电量是普通居民住宅的10~20倍,是欧洲、日本等发达国家同类建筑的1.5~2倍。
对于大型公共建筑而言,能源消耗情况非常复杂,只有实现建筑内各耗能环节分项计量,才可能真正把实际各类系统的能耗状况和合理的用能配额相比较,确定差异的形成,明确进一步的节能潜力。
2、校园建筑能源管理系统的可行性分析
高等院校作为大型公共建筑中的一部分,它集教学、科研和生活于一体, 占地面积大、建筑类型多、功能划分区较复杂,既是人口的高密度区,更是重要的能源消耗大户。
我国绝大多数高等院校人工管理电、水、气的消耗量。原始的人工抄表存在多种问题,如:数据不精确、实时性差、工作量大、管理难度大等。能耗管理部门也没有其他直接有效的手段,获取重点的实际能耗信息,也无法进一步提出节能方案,有效降低能耗。因此更无法对不同类别耗能进行有效正确的分析,因此制定针对性的能耗管理政策尤为关键。
建筑能耗分析管理系统不仅可以分析高耗能设备能耗产生的主要原因,还可以分析办公、生活能耗与气候、人数以及建筑结构之间的关系,即使用一个平台对不同建筑类型建筑的节能潜力进行研究,同时跟据数据分析结果选择正确的节能方法以达到节能的目的。
3、Acrel-5000能耗分析管理系统的优势
1)保证面积庞大的供配电系统安全可靠供电;
2)了解供电隐患,快速定位故障和排除故障;
3)实时准确统计学校各部门、院系和宿舍的用电量,做到独立核算;
4)提高了管理效率,减少人力成本。
4、Acrel-5000能耗分析管理系统在电气工程学校项目中的应用
4.1项目概况
电气工程学校一校五址,建筑面积21133平方米,校内建有行政楼、教学楼、实验楼、师生餐厅、宿舍楼、体育楼等楼群。变配电室是校园内的电力中枢采用电度表实现电度计量,其运行设备的情况依旧依靠人工巡查,远远不能满足安全运行的要求,当出现运行故障、设备老化等情况时,无法及时进行故障隔离使得停电范围不会扩大。对于实验室等重要用能部门的电能质量也没有监测和保障。需要通过建立实时监控来保证用能系统的安全运行。同时北方院校的供热系统同样需要运行的安全监测,可增加智能控制,通过电动调节阀的开闭来控制热量,合理用能。
安科瑞电气股份有限公司承接电力工程学校能耗管理系统的设计、施工及调试。主要完成对现场能耗的集中采集及分析,通过对用户端所有能耗进行细分和统计,以直观的数据和报表向管理人员或决策层展示各类能源的使用消耗情况。
4.2 组网结构
系统采用分层分布式设计,由站控管理层、网络通讯层、现场设备层组成。可以实现远方的监视控制,也能够在上层故障时不影响本层和下一层的功能。


各个结构层的具体形式如下:
1)站控管理层
软件管理层针对配电系统的管理人员,是人机交互的直接窗口,也是整个系统的最上层部分,该层主要由系统软件和必要的硬件设备组成,包括监控主机、打印机、UPS电源。系统软件具有良好的人际交互界面,对采集的现场耗电、耗水、耗气等数据信息经过计算处理,并以图形、数显等方式反映现场的运行状况。
2)网络通讯层
该层是数据信息交换的桥梁,负责对现场设备回送的数据信息进行采集、分类和存储等工作的同时,转达上位机对现场设备的各种控制命令。
3)现场设备层
现场包括ACR多功能电力仪表、终端电能表计、水表、气表、集中供冷供热表,负责采集电力现场的各类数据和信息状态,发送给网络通讯层,同时也作为执行单元,执行网络通讯层发出的指令。
监测建筑数据展示应包括:
4.3 设备参数列表


4.4系统功能及软件界面
系统对电、水、气能耗实时采集、动态监测、能耗分析、成本核算、绩效考核和报表发布等功能,实现校园能源管理精细化,促进节能降耗。
4.4.1 能耗数据对比分析


概要显示当月、当年用能情况,并与往年同期用能进行对比,掌握用能趋势。实时动态监测企业当前用电功率。通过设置每日用能的计划值,实现用能的定额管理,并与实际用能进行对比,对可能出现的用能突增进行预警,全局掌握校园的用能情况。
4.4.2趋势曲线分析


通过用能趋势图,快速定位校园用能负荷高峰,并逐级定位高峰能耗的组成,为移峰填峰找到依据。
4.4.3 分类、分项统计能耗数据


将各类能源监测数据(水、电、气)接入到一套能耗监测系统中,改变原来多头管理的局面,清晰的掌握校园能耗的构成,避免能耗改造过程中降低某一类能耗的同时增加了其他类能耗的支出。
4.4.4 能耗数据综合分析


将校园能耗数据同建筑面积、校园人口、环境温度等参数进行综合比较,系统根据需要建立不同的能耗分析模型,科学、准确的判断一个校园能耗的高低,从而综合分析影响能耗的因数。
4.4.5能耗数据的实时监测


系统具备良好的开放性,可对用户需求进行功能扩展,在基本分析功能的基础上为用户定制个性化报表和分析模板;系统具有报警管理功能,负责报警及事件的传送、报警确认及报警记录功能以便告知用户或供用户查询;系统具备权限管理、系统日志及系统参数设置等功能。
5 结束
能源管理监控系统分别对校园中各个分散分布的区域配电所进行独立测量,能耗管理部门实时掌握高校各区域的水电数据及其能耗负荷的变化,从而及时做出可行性调整,制定相应的管理制度 ,为进一步节能改造提供准确的数据支撑,让系统真正运行起来起到节能的效果。
参考文献:
[1] 上海安科瑞电气股份有限公司产品手册.2013.01.版
[2] 基于ACREL-5000的大型公共建筑能耗监测系统设计与应用[J.]
Acrel3000电能管理系统

-/gjchhj/-

m.jsacrel.b2b168.com

返回目录页